Pentest Journeys
Connect
  • Welcome!
  • Boxes
    • Categories
    • Starting Point
      • Unified
      • Three
    • Easy
      • Forest
      • Sauna
      • Active
      • Broker
      • Return
      • Timelapse
      • Support
      • Nibbles
      • Keeper
      • CozyHosting
      • Devvortex
      • Lame
      • FunBoxEasyEnum
      • Inclusiveness
      • Potato
      • Sumo
    • Medium
      • Resolute
      • Cascade
      • Monteverde
      • Intelligence
      • StreamIO
      • Loly
    • Hard
      • Mantis
      • Blackfield
      • Reel
    • Insane
      • Sizzle
      • Multimaster
      • Rebound
  • Cloud
    • Public Snapshots
  • TL;DR
    • Active Directory
      • AD Authentication
      • Access Controls
      • Recon
      • Groups
        • Account Operators
        • Backup Operators
        • DnsAdmins
        • Exchange Windows Permissions
        • Server Operators
      • Privileges
        • SeBackupPrivilege
        • SeImpersonatePrivilege
      • Permissions
        • AddSelf
        • DCSync
        • ForceChangePassword
        • FullControl
        • GenericAll
        • GenericWrite
        • Owns
        • ReadGMSAPassword
        • ReadLAPSPassword
        • WriteDACL
        • WriteOwner
      • Attacks
        • Password Spraying
        • ASREPRoasting
        • Kerberoasting
        • Silver Tickets
        • DCSync
        • Delegation
          • Unconstrained
          • Constrained
          • Resource-Based
        • Local SAM Dump
        • NTLMv2
        • Services
        • Scheduled Tasks
        • Exploits
      • Lateral Movement
        • WMI & WinRM
        • PsExec
        • Pass-the-Hash
        • Overpass-the-Hash
        • Pass-the-Ticket
        • DCOM
        • SSP Injection
      • Persistence
        • Golden Ticket
        • Shadow Copies
    • Web
      • Common Findings
        • Security Headers
        • Cookie Flags
        • SSL/TLS
      • Authentication
        • Broken Reset Logic
        • Brute Force Attacks
        • Rate Limiting
        • Session Tokens
        • MFA
        • JWTs
      • Authorization
        • IDOR / BOLA
        • IDOR / BFLA
        • Weak Access Controls
        • Automated A-B Testing
      • Injections
        • SQLi
          • SQLi 101
          • In Band
          • Blind
          • NoSQLi
          • Second Order
          • Other
        • XSS
          • XSS 101
          • Reflected
          • Stored
          • DOM-Based
          • Exploitation
          • Payloads
        • CI
          • CI
          • Filters
          • Examples
        • SSTI
          • SSTI 101
          • Twig
          • Freemarker
          • Pug
          • Jinja
          • Mustache
          • Handlebars
          • Mako
          • Case Study: Craft CMS
        • XXEI
          • XML 101
          • XXEI
      • File Inclusion
        • LFI & RFI
        • RCE
      • Cross-Origin
        • Cross-Origin 101
        • CSRF
        • CORS
      • File Uploads
      • Mass Assignment
      • WebSockets
      • Open Redirects
      • Race Conditions
      • SSRF
        • Exploitation
        • Examples
    • API
      • What is an API?
      • Useful Terms
      • Collection Creation
      • Enumeration
      • Tests
        • General
        • Security Misconfigurations
        • Authorization
          • BOLA
          • BFLA
        • Authentication
          • BFAs
          • Tokens
          • JWTs
            • Entropy Analysis
            • Signature Validation
            • Weak Signature
            • Header Injection
            • Algorithm Confusion
        • Excessive Data Exposure
        • HTTP Verb Tampering
        • Content Type Tampering
        • Improper Asset Management
        • Mass Assignment
        • SSRF
        • Unrestriced Resource Consumption
        • Unrestricted Access to Sensitive Business Flows
        • Unsafe API Consumption
    • Infra
      • Windows
      • Linux
      • FreeBSD
    • Pivoting
      • Networking 101
      • Port Foward
      • SSH Tunelling
      • Deep Packet Inspection
        • HTTP Tunneling
        • DNS Tunneling
    • Social Engineering
      • Phising
    • Cloud
      • AWS
        • Recon
    • Code Review
  • Tools
    • Web
      • Web Checklist
      • API
        • mitmweb
        • KiteRunner
        • Arjun
        • jwt_tool
      • Dirbusting
        • Fuff
        • Dirsearch
        • GoBuster
        • Wfuzz
      • Cloud
        • AWS
      • cURL
      • Hydra
      • Hakrawler
      • amass
      • WAFs
      • WhatWeb
      • Creds
      • SQLMap
      • GoWitness
      • Web Servers
        • Apache
        • Nginx
        • IIS
      • Frameworks
        • Spring
      • CMS
        • WordPress
        • Joomla
        • DNN
        • Umbraco
        • RiteCMS
      • DevOps
        • GitLab
        • Git Tools
      • BurpSuite
    • Infra
      • pspy
    • Port Scanners
      • Nmap
      • Rustscan
      • Arp-Scan
      • Netcat
      • PowerShell
    • Active Directory
      • netexec
      • impacket
      • mimikatz
      • Hounds
      • PowerView
      • SysInternals
      • net.exe
      • ldapsearch
      • BloodyAD
      • PowerView.py
      • Rubeus
      • DPAT
      • PingCastle
      • PowerUp
      • runas
      • Kerbrute
    • Passwords
      • HashID
      • Hashcat
      • John
      • DomainPasswordSpray
      • Credential Enum
    • Searchsploit
    • Metasploit
      • 101
      • Payloads
      • Post-Exploitation
      • Resource Scripts
    • Usernames
    • Vulnerability Scanners
      • Nuclei
      • Nikto
    • Text
      • jq
      • grep
      • awk
      • sed
      • tr
      • printf
    • Output
      • tee
    • Pivoting
      • Ligolo-ng
      • Sshuttle
    • Shells
      • Reverse Shells
      • Webshells
      • Upgrade
      • Listeners
        • Socat
        • Pwncat
        • Nc
    • Traffic Capture
    • File Transfers
    • Crypto
    • Files
    • Images
    • Evil-WinRM
    • KeePass
    • Random Scripts
  • Services
    • TCP
      • Remote Access
        • SSH (22)
        • RDP (3389)
        • WinRM (5985,5986)
      • Shares
        • FTP (21)
        • NFS (111, 2049)
        • SMB (139, 445)
      • LDAP (389, 636)
      • DNS (53)
      • SMTP (25,587)
      • DISTCC (3632)
      • AFS (1978)
      • DBMS
        • SQL
          • MSSQL (1433)
          • Oracle (1521)
          • MySQL (3306)
          • MariaDB (3306)
          • PostgreSQL (5432)
        • NoSQL
          • Aerospike (3000-3005)
          • MongoDB (27017)
    • UDP
      • SNMP (161)
  • OTHER
    • Exploits
      • Screen
    • CLIs
      • CMD
      • PowerShell
  • Package Managers
    • vevn
    • uv
  • Blue Team Stuff
    • Logs
      • System Logs
      • Apache2
      • Volatile Data
    • Traffic Analysis
      • Wireshark
Powered by GitBook
On this page
  • Limit Overrun
  • Single-Endpoint
  • Multi-Endpoint

Was this helpful?

  1. TL;DR
  2. Web

Race Conditions

PreviousOpen RedirectsNextSSRF

Last updated 9 months ago

Was this helpful?

Race conditions occur when multiple processes or threads access shared resources simultaneously, leading to unpredictable and incorrect behavior.

This can cause data corruption, security vulnerabilities, and system crashes due to the unsynchronized execution of operations.

Implement proper synchronization mechanisms like locks, semaphores, and atomic operations to ensure orderly access to shared resources.

Limit Overrun

One-time use actions, such as redeeming a coupon, rating a product, or withdrawing money. The exploitation process is the following:

  1. Find a single-use endpoint

  2. Send multiple requests to see if the limit can be overrun

The example below is based on PostSwigger's lab.

The application has a field for inserting a coupon at checkout as well as current coupon that gives us 20% off (Figure 1).

The server prevents coupon abuse, i.e., the same coupon being applied multiple times, when sending the requests sequentially (Figure 2).

We can try testing for a race condition vulnerability by replicating the same request multiple times and sending all simultaneously (Figure 3).

Single-Endpoint

Focusing on an endpoint that has some security impact, such as password reset, account creation, account verification, etc. The goal is to trigger a collision that demonstrates impact rather than just getting requests in before the race window closes.

First, we need to understand how the update email process works (Figure 5).

We can test if a collision is possible by sending multiple requests at the same time using different user emails (Figure 6).

Next, we can try to achieve the required collision (Figure 7) and when it does (Figure 8), refreshing the application page will give us access to the admin panel .

Multi-Endpoint

Testing a series of actions that make up the application flow or business logic. For example, the checkout, the time it takes to verify a payment, and the confirmation. Could we add more items to the basket during this window between checkout and confirmation?

The goal here is to essentially try and sneak a product in our cart before the checkout process completes. To be able to checkout in the first place, we need to have a product in our basket (Figure 9).

Then we need to simultaneously send the checkout request along with the request that adds the target item in the cart (Figure 10). This will result at the target item sneaking into the cart before the checkout is complete.

The example below is based on PostSwigger's lab.

The example below is based on PostSwigger's lab.

Single-endpoint race conditions
Multi-endpoint race conditions
Limit overrun race conditions
Figure 1: The application's coupon functionality.
Figure 2: The application prevents coupon reuse.
Figure 3: Leveraging Burp's features to exploit a race conditiong vulnerability.
Figure 5: Stepping through the update email functionality.
Figure 6: Testing for collisions.
Figure 7: Constructing the requests required for the target collision.
Figure 8: Achieving the target collision.
Figure 9: Adding a giftcard to our basket.
Figure 10: Exploiting a multi-endpoint race condition.
Figure 4: The Single-Endpoint race condition process (image adapted from ).
here